

Théorie des nombres

Interrogation 1 — Corrigé

Exercice 1

Quel est l'anneau des entiers de $\mathbb{Q}(i)$? Est-il euclidien? principal? factoriel? (Il n'est pas demandé de fournir une preuve détaillée).

L'anneau des entiers d'un corps quadratique $\mathbb{Q}(\sqrt{d})$ (pour d un entier relatif sans facteur carré) est:

- $\mathbb{Z}[\sqrt{d}]$ si $d \not\equiv 1 \pmod{4}$;

• $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ si $d \equiv 1 \pmod{4}$. Ici, d=-1 donc on est dans le premier cas. L'anneau des entiers de $\mathbb{Q}(i)$ est $\mathbb{Z}[i]$.

L'anneau des entiers d'un corps quadratique imaginaire (c'est-à-dire d < 0) est euclidien pour $d \in \{-1, -2, -3, -7, -11\}$ (et seulement pour ces entiers négatifs), donc en particulier $\mathbb{Z}[i]$ est euclidien.

Comme tout anneau euclidien est principal et tout anneau principal est factoriel, donc $\mathbb{Z}[i]$ est principal et factoriel.

Dans la suite, p désignera un nombre premier impair. Montrer que si $p \equiv 3 \pmod{4}$ alors p n'est pas somme de deux carrés (d'entiers naturels).

Les carrés dans $\mathbb{Z}/4\mathbb{Z}$ sont: $0^2 \equiv 0$, $1^2 \equiv 1$, $2^2 \equiv 0$ et $3^2 \equiv 1$. On en déduit que la somme de deux carrés peut être congrue à 0, 1 ou 2 modulo 4, mais pas à 3.

Si $p \equiv 3 \pmod{4}$, p ne peut donc pas être somme de deux carrés.

Montrer que p est somme de deux carrés si et seulement s'il est la norme d'un élément a + ib de $\mathbb{Z}[i]$.

Si
$$(a,b) \in \mathbb{Z}^2$$
, on a $N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib) = (a+ib)(a-ib) = a^2+b^2$, donc
$$\exists (a,b) \in \mathbb{Z}^2 \quad p = a^2+b^2 \Longleftrightarrow \exists (a,b) \in \mathbb{Z}^2 \quad N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib)$$

$$\exists (a,b) \in \mathbb{Z}^2 \quad p = a^2 + b^2 \iff \exists (a,b) \in \mathbb{Z}^2 \quad N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib)$$
$$\iff \exists (a+ib) \in \mathbb{Z}[i] \quad N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib).$$

Montrer que dans ce cas (a+ib)|p dans $\mathbb{Z}[i]$, et que a+ib est irréductible dans $\mathbb{Z}[i]$. Comme $p = N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib) = (a+ib)(a-ib)$, on a bien (a+ib)|p.

Rappelons qu'un élément x + iy de $\mathbb{Z}[i]$ est inversible si et seulement si sa norme est inversible dans \mathbb{Z} , et donc si et seulement si elle est égale à 1, puisque les inversibles de \mathbb{Z} sont 1 et -1, et $norm(x+iy)=x^2+y^2\in\mathbb{N}$. En effet, si u=x+iyest inversible, on a $N_{\mathbb{Q}(i)/\mathbb{Q}}(u) N_{\mathbb{Q}(i)/\mathbb{Q}}(u^{-1}) = N_{\mathbb{Q}(i)/\mathbb{Q}}(uu^{-1}) = N_{\mathbb{Q}(i)/\mathbb{Q}}(1) = 1$, avec

 $(N_{\mathbb{Q}(i)/\mathbb{Q}}(u), N_{\mathbb{Q}(i)/\mathbb{Q}}(u^{-1})) \in \mathbb{Z}^2$, donc $N_{\mathbb{Q}(i)/\mathbb{Q}}(u)$ est inversible dans \mathbb{Z} , et réciproquement si $N_{\mathbb{Q}(i)/\mathbb{Q}}(x+iy) = 1$, on a (x+iy)(x-iy) = 1 donc x+iy est inversible dans $\mathbb{Z}[i]$.

Ici, comme $N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib) = p \neq 1$, a+ib n'est pas inversible dans $\mathbb{Z}[i]$.

Supposons maintenant que a+ib=xy, avec $(x,y)\in\mathbb{Z}[i]^2$. Par multiplicativité de la norme, on a alors $N_{\mathbb{Q}(i)/\mathbb{Q}}(x)$ $N_{\mathbb{Q}(i)/\mathbb{Q}}(y)=N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib)=p$, or $N_{\mathbb{Q}(i)/\mathbb{Q}}(x)$ et $N_{\mathbb{Q}(i)/\mathbb{Q}}(y)$ sont des entiers naturels, et p est un nombre premier, donc $(N_{\mathbb{Q}(i)/\mathbb{Q}}(x),N_{\mathbb{Q}(i)/\mathbb{Q}}(y))=(1,p)$ ou $(N_{\mathbb{Q}(i)/\mathbb{Q}}(x),N_{\mathbb{Q}(i)/\mathbb{Q}}(y))=(p,1)$. Dans le premier cas, $N_{\mathbb{Q}(i)/\mathbb{Q}}(x)=1$ donc x est inversible, et dans le second, $N_{\mathbb{Q}(i)/\mathbb{Q}}(y)=1$ donc y est inversible.

On trouve donc que a + ib est irréductible dans $\mathbb{Z}[i]$.

5 En déduire que p est somme de deux carrés si et seulement s'il est réductible dans $\mathbb{Z}[i]$.

Si p est somme de deux carré, on est dans la situation des deux questions précédentes, donc $p=(a+ib)(a-ib)=a^2+b^2$, avec $(a,b)\in\mathbb{Z}^2$. On a donc $N_{\mathbb{Q}(i)/\mathbb{Q}}(a+ib)=p$ et $N_{\mathbb{Q}(i)/\mathbb{Q}}(a-ib)=a^2+(-b)^2=p$, donc a+ib et a-ib sont non inversibles. Donc p est réductible.

Réciproquement, si p est réductible, on peut écrire p=xy, avec $(x,y)\in\mathbb{Z}[i]^2$, et x et y non inversibles dans $\mathbb{Z}[i]$. Comme p=xy, on a $N_{\mathbb{Q}(i)/\mathbb{Q}}(x)$ $N_{\mathbb{Q}(i)/\mathbb{Q}}(y)=N_{\mathbb{Q}(i)/\mathbb{Q}}(p)=p^2$, or x et y sont non inversibles dans $N_{\mathbb{Q}(i)/\mathbb{Q}}(x)\neq 1$ et $N_{\mathbb{Q}(i)/\mathbb{Q}}(y)\neq 1$. Comme $N_{\mathbb{Q}(i)/\mathbb{Q}}(x)$ et $N_{\mathbb{Q}(i)/\mathbb{Q}}(y)$ sont des entiers naturels, on a nécessairement $(N_{\mathbb{Q}(i)/\mathbb{Q}}(x), N_{\mathbb{Q}(i)/\mathbb{Q}}(y))=(p,p)$. D'après la question x0, y1, est donc alors somme de deux carrés.

6 Si p est irréductible dans $\mathbb{Z}[i]$, montrer que l'idéal (p) est premier. Que peut-on en déduire au sujet de l'anneau quotient $\mathbb{Z}[i]/(p)$?

Comme p est irréductible dans $\mathbb{Z}[i]$ et comme l'anneau $\mathbb{Z}[i]$ est factoriel, l'idéal (p) est premier. (C'est le lemme d'Euclide, qui découle l'unicité de la factorisation : si p|xy, comme p est irréductible, p apparaît dans la décomposition en produit d'irréductibles de xy donc dans celle de x ou dans celle de y).

Comme l'idéal (p) est premier, le quotient $\mathbb{Z}[i]/(p)$ est un anneau intègre. (On peut remarquer que $\mathbb{Z}[i]/(p)$ est fini de cardinal p^2 , donc c'est même un corps).

7 Montrer que $\mathbb{Z}[i]/(p) \simeq \mathbb{F}_p[X]/(X^2+1)$.

On considère l'application

$$\left\{ \begin{array}{ccc} \mathbb{Z}[X] & \longrightarrow & \mathbb{F}_p[X]/(X^2+1) \\ P(X) & \longmapsto & \overline{P}[X], \end{array} \right.$$

où \overline{P} désigne le polynôme obtenu en réduisant modulo p les coefficients de P.

Cette application est clairement un morphisme d'anneaux, surjectif. Comme l'idéal (X^2+1) de $\mathbb{Z}[X]$ est inclus dans son noyau, elle induit un morphisme surjectif $\mathbb{Z}[i] \simeq \mathbb{Z}[X]/(X^2+1) \longrightarrow \mathbb{F}_p[X]/(X^2+1)$.

Les éléments a+ib de $\mathbb{Z}[i]$ dont l'image dans $\mathbb{F}_p[X]/(X^2+1)$ est nulle sont ceux qui vérifient $(X^2+1)|(\overline{a}X+\overline{b})$, où \overline{a} (respectivement \overline{b}) désigne la réduction de a (respectivement b) modulo p. Comme le degré de $\overline{a}X+\overline{b}$ est strictement plus petit que

celui de $X^2 + 1$, cela équivaut à ce que $\overline{a}X + \overline{b} = 0$ dans $\mathbb{F}_p[X]$, c'est-à-dire $\overline{a} = \overline{b} = 0$, donc à ce que a et b soient multiples de p, donc à $a + ib \in (p)$.

On en déduit donc un isomorphisme entre $\mathbb{Z}[i]/(p)$ et $\mathbb{F}_p[X]/(X^2+1)$.

Montrer que $\mathbb{F}_p[X]/(X^2+1)$ est intègre si et seulement si -1 n'est pas un carré dans \mathbb{F}_p .

Si -1 est un carré dans \mathbb{F}_p , posons $a \in \mathbb{F}_p$ tel que $a^2 = -1$. On a alors (X-a)(X+a) = X^2+1 , mais $(X^2+1) \nmid (X\pm a)$, donc $\mathbb{F}_p[X]/(X^2+1)$ n'est pas un anneau intègre.

Réciproquement, si -1 n'est pas un carré dans \mathbb{F}_p , alors le polynôme $X^2+1\in\mathbb{F}_p[X]$ n'a pas de racine dans \mathbb{F}_p . Comme il est de degré 2, il est donc irréductible dans $\mathbb{F}_p[X]$. L'anneau $\mathbb{F}_p[X]$ étant euclidien, donc factoriel, on en déduit que l'idéal (X^2+1) de $\mathbb{F}_p[X]$ est premier, et donc que $\mathbb{F}_p[X]/(X^2+1)$ est un anneau intègre.

- Montrer que -1 est un carré dans \mathbb{F}_p si seulement si $p \equiv 1 \pmod{4}$. Conclure.

 - Rappelons qu'un élément x de \mathbb{F}_p^{\times} est un carré si et seulement si $x^{\frac{p-1}{2}}=1$. En effet : comme le polynôme X^2-1 a exactement deux racines, 1 et -1, dans \mathbb{F}_p , le noyau du morphisme de groupes $\mathbb{F}_p^{\times} \to \mathbb{F}_p^{\times}$, $u \mapsto u^2$ est $\{\pm 1\}$, donc le nombre de carrés dans \mathbb{F}_p^\times est égal au cardinal de $\mathbb{F}_p^\times/\{\pm 1\},$ c'est-à-dire $\frac{p-1}{2}\,;$
 - ces $\frac{p-1}{2}$ carrés sont tous des racines du polynôme $X^{\frac{p-1}{2}}-1$, puisqu'ils forment un sous-groupe de cardinal $\frac{p-1}{2}$ de \mathbb{F}_p^{\times} ;
 - or le polynôme $X^{\frac{p-1}{2}} 1$ a au plus $\frac{p-1}{2}$ racines dans \mathbb{F}_p , puisque qu'il est de degré $\frac{p-1}{2}$ et \mathbb{F}_p est un corps (donc est intègre), donc ses racines sont exactement les $\frac{p-1}{2}$ carrés contenus dans \mathbb{F}_p .

On a $(-1)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ si et seulement si $p \equiv 1 \pmod{4}$, donc -1 est un carré dans \mathbb{F}_p si seulement si $p \equiv 1 \pmod{4}$.

Si p est somme de deux carrés, alors $p \equiv 1 \pmod{4}$, d'après la question 2. Réciproquement, si $p \equiv 1 \pmod{4}$, alors -1 est un carré dans \mathbb{F}_p , donc (question 8) l'anneau $\mathbb{F}_p[X]/(X^2+1)$ n'est pas intègre, donc (question 7) $\mathbb{Z}[i]/(p)$ n'est pas intègre, donc (contraposition de la question 6) p est réductible dans $\mathbb{Z}[i]$, donc (question 5) p est somme de deux carrés.

On trouve donc que p est somme de deux carrés si et seulement si $p \equiv 1 \pmod{4}$.