

Théorie des nombres

Examen (10 juin 2011 — 2^e session)

Les notes de cours et de TD, ainsi que les calculatrices, sont autorisées. Les téléphones portables sont interdits.

Durée: 2 heures

Sauf mention explicite du contraire, toutes les réponses doivent être accompagnées d'une démonstration.

Exercice 1

Pour quels polynômes $P \in \mathbb{Z}[X]$ l'équation $y^2 = 3P(x) + 2$ a-t-elle des solutions dans \mathbb{Z}^2 ?

Exercice 2

Soit x un entier relatif, soit $n = x^2 - x + 1$ et soit p un diviseur premier de n.

- 1. Montrer que -3 est un carré modulo p.
- 2. En déduire que p = 3 ou $p \equiv 1 \pmod{3}$.

Exercice 3

- 1. Énoncer un critère (condition suffisante) d'irréductibilité des polynômes dans $\mathbb{Z}[X]$. (Il n'est pas demandé de démontrer le critère).
- 2. Existe-t-il un entier algébrique de degré 100?

Exercice 4

Le nombre $\cos(\pi/12)$ est-il un nombre algébrique?

Exercice 5

Soit p un nombre premier impair. Le but de ce problème est de donner un algorithme permettant de résoudre explicitement le problème des deux carrés, i.e. trouver $x,y\in\mathbb{N}$ tels que $x^2+y^2=p$ quand $p\equiv 1\pmod 4$.

1. Rappeler rapidement pour quoi il n'existe pas de tels entiers si $p \equiv 3 \pmod 4$. On suppose désorma is que $p \equiv 1 \pmod 4$.

1/2 TSVP \rightarrow

- 2. Posons $p=1+2^em$, avec $e,m\in\mathbb{N}$ et m impair. Soit $s\in\mathbb{F}_p^{\times}$ tel que $s^m\neq 1$. Montrer qu'il existe un entier $d\geqslant 0$ tel que $(s^m)^{2^d}=1$.
- 3. Quels sont $x \in \mathbb{F}_p$ tels que $x^2 = 1$? (Rappel : la réponse doit être complètement démontrée).
- 4. En prenant pour d le plus petit entier naturel tel que $(s^m)^{2^d} = 1$, montrer que si $d \ge 2$ alors $(s^m)^{2^{d-2}}$ est une racine carré de -1 dans \mathbb{F}_p .
- 5. Montrer qu'il y a au plus $2m = \frac{p-1}{2^{e-1}}$ éléments $s \in \mathbb{F}_p^{\times}$ tels que d < 2. (On pourra montrer que ce sont des racines d'un polynôme bien choisi). Si $p \equiv 1 \pmod{4}$, en prenant s au hasard, équiprobablement, dans \mathbb{F}_p^{\times} , on a donc au moins une chance sur deux d'avoir $d \geq 2$ et donc d'en déduire une racine carrée de-1. Si d < 2, on recommence jusqu'à tomber sur un s qui convient.
- 6. Soit α une racine carrée de -1 dans \mathbb{F}_p . On considère l'application

$$\Phi \colon \left\{ \begin{array}{ccc} \mathbb{Z}[i] & \longrightarrow & \mathbb{F}_p \\ a+ib & \longmapsto & a+\alpha b. \end{array} \right.$$

Montrer que c'est un morphisme d'anneaux.

- 7. Montrer que son noyau $\ker \Phi$ est l'idéal engendré par p et A-i, où $A \in \mathbb{Z}$ est un relèvement de α (autrement dit, A est un entier dont la classe modulo p est α).
- 8. Démontrer l'existence d'un générateur g de l'idéal ker Φ .
- 9. Montrer que g est de norme p dans $\mathbb{Z}[i]$.
- 10. Conclure.
- 11. En suivant la stratégie décrite dans les questions précédentes, écrire 97 comme somme de deux carrés.