CORRECTION DU SECOND CONTROLE CONTINU

On cherche à résoudre l'équation diophantienne $x^3 = y^2 + 2$. Dans toute la suite on note simplement N la norme $N_{\mathbb{Q}(\sqrt{-2})/\mathbb{Q}}$ du corps de nombres $\mathbb{Q}(\sqrt{-2})$. On remarque que pour tout $x \in \mathbb{Z}[\sqrt{-2}]$, N(x) est un entier positif.

- 1. L'anneau $\mathbb{Z}[\sqrt{-2}]$ est factoriel d'après le cours, puisqu'il est euclidien.
- 2. Soit $x = a + b\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$. x est inversible si et seulement si $N(x) = a^2 + 2b^2 = 1$. Les seuls inversibles de $\mathbb{Z}[\sqrt{-2}]$ sont donc 1 et -1.
- 3. Supposons au contraire y pair. Alors y^2 est pair donc x^3 est pair aussi et x également doit être pair. Mais alors $2 = x^3 y^2$ est divisible par 4; contradiction.
- 4. Si t divise $y + \sqrt{-2}$ et $y \sqrt{-2}$, alors t divise $(y + \sqrt{-2}) + (y \sqrt{-2}) = 2y$ et t divise aussi $(y + \sqrt{-2}) (y \sqrt{-2}) = 2\sqrt{-2}$.
- 5. Puisque t divise 2y, alors N(t) divise $N(y) = 4y^2$. De même, t divisant $2\sqrt{-2}$, la norme N(t) divise la norme $N(2\sqrt{-2}) = 8$. Ainsi, N(t) est un diviseur positif de 8. Comme y est impair, et N(t) divise $4y^2$, N(t) n'est pas égal à 8. Donc $N(t) \in \{1, 2, 4\}$.
- 6. Il suffit de chercher les éléments de norme 1,2, et 4. On a vu que 1 et -1 sont les seuls éléments de norme 1. Ensuite, l'équation $a^2 + 2b^2 = 2$ admet seulement les solutions entières $(a,b) = (0,\pm 1)$ de même que l'équation $a^2 + 2b^2 = 4$ admet les seules solutions entières $(\pm 2,0)$. Il suit que $t \in \{\pm 1,\pm 2,\pm 4\}$.
- 7. Il suffit de vérifier que ni 2, ni $\sqrt{-2}$ ne divise simultanément $y+\sqrt{-2}$ et $y-\sqrt{-2}$. Donc les seuls diviseurs communs de $y+\sqrt{-2}$ et $y-\sqrt{-2}$ sont 1 et -1. En d'autres termes, $y+\sqrt{-2}$ et $y-\sqrt{-2}$ sont premiers entre eux.
- 8. Rappelons la factorialité de l'anneau $\mathbb{Z}[\sqrt{-2}]$. Soit p un diviseur irréductible de $y+\sqrt{-2}$. Comme $y+\sqrt{-2}$ et $y-\sqrt{-2}$ sont premiers entre eux, p ne divise pas $y-\sqrt{-2}$; par unicité de la décomposition en irréductibles, p divise x^3 et donc (comme p est irréductible) p divise x. Soit $k=\max\{j\in\mathbb{N}|p^j\text{ divise }x\}$. Alors p^{3k} divise x^3 (et p^{3k+1} ne divise pas x^3) donc p^{3k} divise $y+\sqrt{-2}$ et p^{3k+1} ne divise pas $y+\sqrt{2}$. On en déduit que $y+\sqrt{-2}$ est un cube.

 9. En développant on obtient $y+\sqrt{-2}=a^3-6ab^2+(3a^2b-2b^3)\sqrt{-2}$. Par
- 9. En développant on obtient $y + \sqrt{-2} = a^3 6ab^2 + (3a^2b 2b^3)\sqrt{-2}$. Par identification des coefficients on obtient $y = a^3 6ab^2$ et l'égalité demandée: $(3a^2 2b^2)b = 1$.
- 10. D'abord comme les seuls inversibles de $\mathbb Z$ sont 1 et -1, l'équation précédente est équivalente à $\begin{cases} b=1\\ 3a^2-2b^2=1 \end{cases}$ ou $\begin{cases} b=-1\\ 3a^2-2b^2=-1 \end{cases}$ Dans le premier cas, il y a une unique solution $a=\pm 1,b=1;$ dans le deuxième cas, il n'y a pas de solution. Les solutions de l'équation diophantienne $(3a^2-2b^2)b=1$ sont $(a,b)=(\pm 1,1).$
- 11. D'après la question 9, on a $y=a^3-6ab^2$, soit $y=\pm 5$. Il suit $x^3=27$, soit x=3. L'ensemble des (x,y) dans $\mathbb Z$ tels que $x^3=y^2+2$ est $\{(3,5),(3,-5)\}$.