Corps finis

Lionel Fourquaux

8 juin 2016

1 Caractéristique et sous-corps premier

Proposition 1.1. Soit k un corps. Notons 1_k l'élément neutre de la multiplication de k. L'application

$$\iota \colon \left\{ \begin{array}{ccc} \mathbb{Z} & \longrightarrow & k \\ n & \longmapsto & n \mathbb{1}_k \end{array} \right.$$

est un morphisme de \mathbb{Z} -algèbres, dont le noyau est un idéal premier de \mathbb{Z} , et dont l'image est le plus petit sous-anneau unitaire non nul de k.

Démonstration. L'application ι est clairement un morphisme de \mathbb{Z} -algèbres, en particulier d'anneaux, donc son noyau est un idéal de \mathbb{Z} et son image est un sous-anneau unitaire non nul de k.

Tout sous-anneau unitaire non nul de k contient 1_k et est un sous-groupe pour l'addition, donc contient l'image de ι .

Comme l'image de ι est un sous-anneau de k, c'est un anneau intègre, donc le noyau de ι est un idéal premier de \mathbb{Z} .

Corollaire 1.2. Le noyau de l'application ι de la proposition 1.1 est de la forme $p\mathbb{Z}$ avec p=0 ou p un nombre premier. Cet entier p est appelé la caractéristique du corps k.

Démonstration. En effet, les idéaux premiers de \mathbb{Z} sont $\{0\}$ et les $p\mathbb{Z}$ pour p un nombre premier. \square

Proposition 1.3. Si k est un corps, le plus petit sous-corps de k, appelé le sous-corps premier de k, est isomorphe à :

- \mathbb{Q} si k est de caractéristique nulle;
- $\mathbb{Z}/p\mathbb{Z}$ si k est de caractéristique p > 0.

Démonstration. Si k est de caractéristique p>0, alors le plus petit sous-anneau unitaire non nul de k est l'image de l'application ι de la proposition 1.1, qui est isomorphe à $\mathbb{Z}/p\mathbb{Z}$ puisque le noyau de ι est $p\mathbb{Z}$. L'image de ι est donc un sous-corps de k (puisque $\mathbb{Z}/p\mathbb{Z}$ est un corps), donc c'est aussi le plus petit sous-corps de k.

Si k est de caractéristique nulle, alors son plus petit sous-anneau unitaire non nul est isomorphe (via ι) à \mathbb{Z} . Alors, le corps \mathbb{Q} des fractions de \mathbb{Z} s'injecte dans k (par propriété universelle du corps des fractions), et même dans tout sous-corps de k. L'image de \mathbb{Q} par cette injection est clairement le plus petit sous-corps de k.

Corollaire 1.4. Tout corps fini est une extension de $\mathbb{Z}/p\mathbb{Z}$, où p > 0 est la caractéristique du corps.

Démonstration. En effet, si k est un corps fini, il ne peut pas contenir de sous-corps isomorphe à \mathbb{Q} (qui est infini), donc, par la proposition 1.3, la caractéristique de k ne peut pas être nulle. Le second cas de la proposition 1.3 permet alors de conclure.

Corollaire 1.5. Le cardinal d'un corps fini est une puissance d'un nombre premier, et ce nombre premier est sa caractéristique.

Démonstration. Soit k un corps fini. C'est une extension de $\mathbb{Z}/p\mathbb{Z}$, où p est la caractéristique de k, donc, en particulier, k est muni d'une structure de $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel. De plus, k contient une famille génératrice finie (l'ensemble de ses éléments) donc k est un espace vectoriel de dimension finie sur $\mathbb{Z}/p\mathbb{Z}$. Notons d sa dimension.

En tant qu'espace vectoriel, k est isomorphe à $(\mathbb{Z}/p\mathbb{Z})^d$ (par choix d'une base), donc $|k| = p^d$.

2 Groupe multiplicatif d'un corps fini

Proposition 2.1. *Soit k un corps, et soit*

$$\mu(k) = \{ x \in k / \exists e \in \mathbb{N}^* \ x^e = 1 \}$$

le sous-groupe de k^{\times} formé des racines de l'unité. Alors tout sous-groupe fini de $\mu(k)$ est cyclique.

Démonstration. Soit G un sous-groupe fini de $\mu(k)$, d'ordre n.

Si d > 0 est un entier divisant n, alors on a deux cas.

- Ou bien il n'existe pas d'élément $x \in G$ d'ordre d.
- Ou bien il existe un $x \in G$ d'ordre d. Il engendre alors un sous-groupe cyclique de G, isomorphe à $\mathbb{Z}/d\mathbb{Z}$. Celui-ci contient $\phi(d)$ éléments d'ordre d, où ϕ désigne la fonction indicatrice d'Euler. D'autre part, les éléments de $\mu(k)$ dont l'ordre divise d sont les racines de X^d-1 dans k. Il y en a donc au plus d, or le sous-groupe engendré par x contient d tels éléments, donc ce sous-groupe contient tous les éléments de G dont l'ordre divise d. En particulier, G contient exactement $\phi(d)$ éléments d'ordre d.

En comptant les éléments de *G* selon leur ordre, on trouve donc

$$n = |G| = \sum_{d \mid n} |\{x \in G / x \text{ est d'ordre } d\}| \le \sum_{d \mid n} \phi(d).$$

Or, pour tout entier d>0 divisant n, le groupe $\mathbb{Z}/n\mathbb{Z}$ contient $\phi(d)$ éléments d'ordre d (car les éléments dont l'ordre divise d sont ceux du sous-groupe $\frac{n}{d}\mathbb{Z}/n\mathbb{Z}\simeq\mathbb{Z}/d\mathbb{Z}$), donc

$$\sum_{d\mid n}\phi(d)=n.$$

On en déduit donc que pour tout entier d>0 divisant n, on a

$$|\{x \in G/x \text{ est d'ordre } d\}| = \phi(d) > 0.$$

En particulier (avec d = n), le groupe G contient un élément d'ordre n, donc il est cyclique.

Corollaire 2.2. Si k est un corps fini, alors le groupe k^{\times} est cyclique.

Démonstration. Si le corps k a q éléments, alors k^{\times} est un groupe d'ordre q-1, donc tous les éléments de k^{\times} sont des racines (q-1)-ièmes de l'unité, donc k^{\times} est un sous-groupe fini de $\mu(k)^1$, donc il est cyclique.

Corollaire 2.3. Les extensions finies de corps finis sont monogènes.

Démonstration. Soit k'/k une extension finie de corps finis. Notons α un générateur du groupe cyclique k'^{\times} , alors on a $k' = k[\alpha] = k(\alpha)$.

3 Théorie de Galois des corps finis

Proposition 3.1. Si k est un corps de caractéristique p, alors l'application

$$\varphi \colon \left\{ \begin{array}{ccc} k & \longrightarrow & k \\ x & \longmapsto & x^p \end{array} \right.$$

est un morphisme de corps, appelé le morphisme de Frobenius. Si k est un corps fini, alors c'est un automorphisme.

Démonstration. On a $\varphi(xy) = x^p y^p = \varphi(x)\varphi(y)$ et $\varphi(1) = 1^p = 1$. De plus,

$$\varphi(x+y) = (x+y)^p$$

$$= \sum_{i=0}^p \binom{p}{i} x^i y^{p-i} \qquad \text{par formule du binôme}$$

$$= x^p + y^p \qquad \text{car} \binom{p}{i} \equiv 0 \pmod{p} \text{ si } 1 \leqslant i \leqslant p-1, \text{ et}$$

$$k \text{ est de caractéristique } p$$

$$= \varphi(x) + \varphi(y)$$

L'application φ est donc un morphisme de corps. En particulier, elle est injective. Si k est fini, elle est donc bijective.

Si k'/k est une extension de corps finis, notons Gal(k'/k) le groupe des automorphismes k-linéaires² de k'.

Si k est un corps de caractéristique p, alors son sous-corps premier est $\mathbb{Z}/p\mathbb{Z}$. Comme le sous-corps premier est engendré (comme groupe) par 1, qui est fixe par tous les automorphismes, les éléments du sous-corps premiers sont fixes par les automorphismes de k, donc $\operatorname{Gal}(k/(\mathbb{Z}/p\mathbb{Z}))$ est le groupe des automorphismes de k, et $\varphi \in \operatorname{Gal}(k/(\mathbb{Z}/p\mathbb{Z}))$.

Lemme 3.2. Si k est un corps fini de caractéristique p, de cardinal $q = p^d$, alors son automorphisme de Frobenius φ est d'ordre d.

^{1.} Bien sûr, on a en fait $\mu(k) = k^{\times}$.

^{2.} Autrement dit, ce sont les automorphismes de k' qui fixent les éléments du sous-corps k.

Démonstration. Soit g un générateur du groupe cyclique k^{\times} , et soit $e \in \mathbb{Z}$. Alors :

$$\begin{split} \varphi^e &= \operatorname{id} \Longleftrightarrow \varphi^e(g) = g \\ &\iff g^{p^e} = g \\ &\iff q-1 \mid p^e-1 \qquad \operatorname{car} g \operatorname{est} \operatorname{d'ordre} |k^\times| = q-1 \\ &\iff d \mid e \qquad \operatorname{car} p \operatorname{est} \operatorname{d'ordre} d \operatorname{dans} \mathbb{Z}/(q-1)\mathbb{Z}, \operatorname{puisque} 1, \\ p, p^2, \dots, p^{d-1} \operatorname{sont} \operatorname{deux} \grave{\operatorname{a}} \operatorname{deux} \operatorname{distinct} \operatorname{modulo} q-1 = p^d-1 > p^{d-1}, \operatorname{et} p^d \equiv 1 \pmod{q-1}. \end{split}$$

On en déduit la structure du groupe Gal(k'/k).

Proposition 3.3. Soit k'/k une extension de corps finis. Soient p leur caractéristique, q = |k|, q' = |k'|, $d = [k : \mathbb{Z}/p\mathbb{Z}]$ et $d' = [k' : \mathbb{Z}/p\mathbb{Z}]$, de sorte que $q = p^d$, $q' = p^{d'}$ et $\frac{d'}{d} = [k' : k]$. Soit $\varphi : k' \to k'$ l'automorphisme de Frobenius. Alors Gal(k'/k) est un groupe cyclique, d'ordre [k' : k], engendré par $\varphi_q = \varphi^d$ (que l'on appelle parfois le morphisme de Frobenius relatif).

Démonstration. D'après le lemme 3.2, $\varphi_q|_k = \mathrm{id}_k$, donc $\varphi_q \in \mathrm{Gal}(k'/k)$. De plus, φ est d'ordre d' (dans le groupe des automorphismes de k') et $d \mid d'$, donc φ_q est d'ordre $\frac{d'}{d}$.

Soit $\alpha \in k'$ tel que $k' = k(\alpha)$. L'application

$$\left\{
\begin{array}{ccc}
\operatorname{Gal}(k'/k) & \longrightarrow & k' \\
\sigma & \longmapsto & \sigma(g)
\end{array}
\right.$$

est injective. En effet, si $\sigma_0(\alpha) = \sigma_1(\alpha)$, alors $(\sigma_1^{-1}\sigma_0)(\alpha) = \alpha$, donc $\sigma_1^{-1}\sigma_0 = \mathrm{id}_{k'}$ (puisque $k' = k[\alpha]$), donc $\sigma_0 = \sigma_1$. Soit $Q \in k[X]$ le polynôme minimal de α , alors l'image de l'application $\sigma \mapsto \sigma(g)$ est contenue dans l'ensemble des racines de Q (puisque $Q(\sigma(\alpha)) = \sigma(Q(\alpha)) = \sigma(0) = 0$), donc $|\mathrm{Gal}(k'/k)| \leq \deg Q \leq [k':k] = \frac{d'}{d}$.

Comme $\operatorname{Gal}(k'/k)$ contient un élément d'ordre $\frac{d'}{d}$, on en déduit qu'il est cyclique, d'ordre $\frac{d'}{d}$, engendré par φ_q .

Lemme 3.4. Soit k'/k une extension de corps finis. Si H est un sous-groupe de Gal(k'/k), et si k'^H est le sous-corps de k' formé des éléments de k' fixes sous l'action de H, alors on a $[k':k'^H] = |H|$.

Démonstration. Notons que $H \subseteq \operatorname{Gal}(k':k'^H)$. D'après la proposition 3.3, on a donc $|H| \leqslant [k':k'^H]$. Soit $\alpha \in k'$ tel que $k' = k[\alpha]$. On a alors $k' = k'^H[\alpha]$. Le polynôme

$$\prod_{\sigma \in H} (X - \sigma(\alpha))$$

est à coefficients dans k'^H car les polynômes symétriques en les $\sigma(\alpha)$ sont fixes sous l'action de H. C'est un polynôme annulateur de α , de degré |H|, donc $[k':k'^H] \leq |H|$, d'où l'égalité.

Le théorème suivant est la correspondance de Galois dans le cadre des corps finis.

Proposition 3.5. Soit k'/k une extension de corps finis. Alors l'ensemble \Re des extensions intermédiaires entre k et k' est en bijection avec l'ensemble \Re des sous-groupes de Gal(k'/k), par les deux applications inverses l'une de l'autre :

$$\left\{ \begin{array}{cccc} \Re & \longrightarrow & \mathfrak{G} & & \text{et} \\ \kappa & \longmapsto & \operatorname{Gal}(k'/\kappa) & & & \left\{ \begin{array}{cccc} \mathfrak{G} & \longrightarrow & \Re \\ H & \longmapsto & {k'}^H \end{array} \right. \right.$$

Démonstration. Si $\kappa \in \Re$, on a $\kappa \subseteq k'^{\mathsf{Gal}(k'/\kappa)}$, or le lemme 3.4 et la proposition 3.3 donnent

$$\left[k':k'^{\operatorname{Gal}(k'/\kappa)}\right] = \left|\operatorname{Gal}(k'/\kappa)\right| = \left[k':\kappa\right],$$

donc $\kappa = k'^{\operatorname{Gal}(k'/\kappa)}$.

Si $H \in \mathfrak{G}$, on a $H \subseteq \operatorname{Gal}(k'/k'^H)$, et la proposition 3.3 et le lemme 3.4 donnent

$$\left|\operatorname{Gal}\left(k'/k'^{H}\right)\right| = \left[k':k'^{H}\right] = |H|,$$

 $donc H = Gal(k'/k'^H).$

Corollaire 3.6. Si k'/k est une extension de corps finis, alors pour tout diviseur d de [k':k] il existe un unique sous-corps κ de k' contenant k tel que $[\kappa:k]=d$

Démonstration. D'après la proposition 3.5, cela revient à montrer que le groupe cyclique Gal(k'/k), qui est d'ordre [k':k], a un unique sous-groupe d'indice d, ce qui est vrai (c'est le sous-groupe des multiples de d).

4 Existence et unicité

Proposition 4.1. Si p est un nombre premier et si m > 0 est un entier, il existe un corps fini de cardinal p^m , et celui-ci est unique à isomorphisme près.

Démonstration. Notons $q = p^m$. Soit k un corps de décomposition du polynôme $X^q - X \in (\mathbb{Z}/p\mathbb{Z})[X]$ sur $\mathbb{Z}/p\mathbb{Z}$, et soit $\varphi \colon x \mapsto x^p$ le morphisme de Frobenius (absolu) de k.

Notons κ le sous-corps de k formé des éléments fixés par φ^m . Alors φ^m est trivial dans $Gal(\kappa/(\mathbb{Z}/p\mathbb{Z}))$, qui est cyclique, engendré par φ , d'ordre $[\kappa:\mathbb{Z}/p\mathbb{Z}]$, d'après la proposition 3.3. On trouve donc que $[\kappa:\mathbb{Z}/p\mathbb{Z}] \mid m$, et donc $|\kappa| \leq q$.

D'autre part, les racines dans k' du polynôme $X^q - X$ sont par définition fixes par φ^m , donc elles sont dans κ . Or ce polynôme est scindé sur k (par définition de k), et à racines simples car il est premier à sa dérivée (qui est -1). On a donc $||\geqslant q$, donc $|\kappa|=q$. Il existe donc un corps à q éléments.

Comme le polynôme $X^q - X$ est scindé sur κ , par minimalité du corps de décomposition, on a $k = \kappa$.

Si k' est un corps à q éléments, ses éléments sont tous fixes par $x\mapsto x^q$ (par le lemme 3.2), i.e. ils sont tous racines du polynôme $X^q-X\in(\mathbb{Z}/p\mathbb{Z})[X]$. Donc ce polynôme est scindé sur k', et comme l'ensemble de ses racines engendre (et est même égal à) k', le corps k' est un corps de décomposition de X^q-X . Par unicité à isomorphisme près du corps de décomposition, on en déduit que k et k' sont isomorphes.

On note usuellement \mathbb{F}_q « le » corps à q éléments, pour q une puissance d'un nombre premier. En général³, il n'y a pas unicité de l'isomorphisme entre deux corps finis de même cardinal.

^{3.} Il y a unicité si et seulement si ce cardinal est premier.

Corollaire 4.2. Pour tout corps fini k et tout entier d > 0, il existe un polynôme $Q \in k[X]$ irréductible sur k de degré d.

Démonstration. D'après la proposition 4.1, il existe un corps k' à $|k|^d$ éléments. D'après le corollaire 3.6, k' contient un sous-corps à |k| éléments, et d'après la proposition 4.1, celui-ci est isomorphe à k. Quitte à les identifier, on peut voir k' comme une extension de k.

Soit $\alpha \in k'$ tel que $k' = k[\alpha]$ (cf. corollaire 2.3), et soit $Q \in k[X]$ le polynôme minimal de α sur k. Alors Q est irréductible sur k, et deg Q = [k' : k] = d.

5 Factorisation de $X^{q^m} - X$

Le polynôme $X^{q^m} - X \in \mathbb{F}_q[X]$ est premier à sa dérivée -1. Il est donc sans facteur carré, et il suffit de connaître ses diviseurs irréductibles pour en déduire sa factorisation.

Soit $Q \in \mathbb{F}_a[X]$ un polynôme irréductible, et soit $k = \mathbb{F}_a[X]/(Q(X))$. On note α la classe de X dans k.

$$\begin{split} Q \mid (X^{q^m} - X) &\iff \alpha^{q^m} - \alpha = 0 \\ &\iff \varphi_q^m(\alpha) = \alpha \\ &\iff \varphi_q^m \text{ est l'identit\'e sur } \mathbb{F}_q[\alpha] \\ &\iff \varphi_q^m = \mathrm{id}_k \\ &\iff \varphi_q^m = 1 \text{ dans le groupe } \mathrm{Gal}(k/\mathbb{F}_q) \\ &\iff \deg(Q) \mid m \\ \end{split} \qquad \begin{aligned} & \operatorname{car} \varphi_q \text{ est un morphisme de } \mathbb{F}_q\text{-alg\'ebres} \\ & \operatorname{car} k = \mathbb{F}_q[\alpha] \\ & \operatorname{car} \varphi_q \text{ est d'ordre } [k : \mathbb{F}_q] = \deg(Q). \end{aligned}$$

On a donc:

$$X^{q^m} - X = \prod_{\substack{Q \in \mathbb{F}_q[X] \\ Q \text{ unitaire irréductible } \deg(O) \mid m}} Q.$$

6 Carrés dans les corps finis