L3 2015-2016

Géométrie et isométries

Rappels d'algèbre linéaire & produit scalaire

Les sujets de TD sont disponibles sur la page web : https://www.normalesup.org/~fourquau/pro/teaching/2015-2016/geis/

Rappels d'algèbre linéaire

Exercice 1

Soit $f: E \to F$ une application linéaire. Montrer que $\ker f = \{ x \in E \, / \, f(x) = 0 \}$ est un sous-espace vectoriel de E. Montrer que l'image de f est un sous-espace vectoriel de F.

Exercice 2

Soit E un espace vectoriel, et soit f un endomorphisme de E. Montrer que ker $f^2 = \ker f$ si et seulement si $\ker f \cap \operatorname{im} f = \{0\}.$

Exercice 3

Calculer le noyau de la matrice suivante.

$$\begin{pmatrix} 6 & -1 & -15 \\ 4 & 7 & 13 \\ 5 & 3 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

Exercice 4

Soit n>0 un entier. Soit E l'ensemble des polynôme à coefficients dans $\mathbb R$ de degré inférieur ou égal à n.

- 1. Montrer que E, muni de l'addition des polynômes et de la multiplication des polynômes par un réel, est un \mathbb{R} -espace vectoriel.
- 2. Quelle est la dimension de E?
- 3. Soit $a\in\mathbb{R}$, et soit $\operatorname{ev}_a\colon E\to\mathbb{R}$ l'application définie par $\operatorname{ev}_a(P)=P(a).$ Montrer que ev_a est une forme linéaire sur E.
- 4. Quelle est la dimension du noyau de ev_a ?

Soit $f \colon E \to F$ une application linéaire de rang 1. Montrer qu'il existe une forme linéaire ℓ sur E et un vecteur $v \in F$ tels que $f(x) = \ell(x)v$ pour tout $x \in E$.

Exercice 6

On considère l'ensemble des suites réelles $(u_n)_{n\geqslant 0}$ qui vérifient $u_n=u_{n-2}+u_{n-3}$ (pour tout $n\geqslant 3$).

- 1. Montrer que c'est un sous-espace vectoriel de l'espace des suites réelles.
- 2. Montrer qu'une telle suite vérifie

$$\begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}^n \begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix} \qquad (\forall n \geqslant 0)$$

3. Montrer que cet espace est de dimension finie et déterminer sa dimension.

Exercice 7

Soit E un k-espace vectoriel, et soit f un endomorphisme de E, tel que les droites vectorielles de E (c'est-à-dire les sous-espaces de dimension 1) sont stables par f. Montrer que f est une homothétie, i.e. qu'il existe une constante $\lambda \in k$ telle que $\forall x \in E$ $f(x) = \lambda x$.

Exercice 8

Soit E un espace vectoriel, et soient $p_1,\,...,\,p_m$ des endomorphismes de E tels que :

- (i) $p_i \circ p_i = p_i$, pour $1 \leqslant i \leqslant m$, i.e. les endomorphismes p_i sont des projecteurs;
- (ii) $p_i \circ p_j = 0$, si $1 \leqslant i, j \leqslant m$ et $i \neq j$;
- (iii) $p_1 + ... + p_m = id_E$.

Montrer que les images de p_1 , ..., p_m sont en somme directe, et que leur somme est E. Réciproquement, montrer que si $E=E_1\oplus\ldots\oplus E_m$, avec E_1 , ..., E_m des sous-espaces de E, alors il existe des projecteurs p_1 , ..., p_m comme ci-dessus tels que l'image de chaque p_i soit E_i .

Exercice 9

Soient $f\colon E\to M$ et $g\colon F\to M$ deux applications linéaires. On définit les applications linéaires suivantes :

$$\Phi \colon \left\{ \begin{array}{ccc} E \times F & \longrightarrow & M \\ (x,y) & \longmapsto & f(x) - g(y) \end{array} \right. \quad \text{et} \quad \operatorname{pr}_1 \colon \left\{ \begin{array}{ccc} E \times F & \longrightarrow & E \\ (x,y) & \longmapsto & x. \end{array} \right.$$

Montrer que

$$\operatorname{im} f \cap \operatorname{im} g = f(\operatorname{pr}_{1}(\ker \Phi)).$$

Soit E un \mathbb{R} -espace vectoriel de dimension finie, et soient F, F' deux sous-espaces de E de même dimension. Montrer qu'il existe un sous-espace de E qui est supplémentaire de F et de F'. (On pourra raisonner par récurrence sur la codimension de F).

Exercice 11

Rappelons les théorèmes suivants.

Proposition 1. Soient k un corps, E un k-espace vectoriel, $(e_i)_{i\in I}$ une famille libre d'éléments de E et $(f_j)_{j\in J}$ une famille génératrice de E. On suppose que J est fini. Alors $\operatorname{Card} I \leqslant \operatorname{Card} J$.

Corollaire 1. Toutes les bases d'un espace vectoriel de dimension finie ont le même cardinal.

Compléter la preuve ci-dessous.

Lemme 1. Soit $m \ge 0$ un entier tel que $m \le \operatorname{Card} I$. Il existe une partie $I_m \subseteq I$ et une partie $J_m \subseteq J$ telles que :

- Card $I_m = \operatorname{Card} J_m = m$;
- $(e_{i,i\in I_m}, f_{j,j\in J\setminus J_m})$ est une famille génératrice de E.

On procède par $\boxed{1}$.

Pour $m = 0, \boxed{2}$ conviennent trivialement.

Supposons que le lemme est vrai pour $\boxed{3}$ entier $0 \leqslant m < \operatorname{Card} I$. Comme $I \setminus I_m \neq \emptyset$, il existe un $i_0 \in I \setminus I_m$. Notons $I_{m+1} = I_m \cup \{i_0\}$, alors, comme $\boxed{4}$, on a $\operatorname{Card} I_{m+1} = m+1$. La famille $\left(e_{i,i \in I_m}, f_{j,j \in J \setminus J_m}\right)$ engendre E. On peut donc écrire

$$e_{i_0} = \sum_{i \in I_m} \lambda_i e_i + \sum_{j \in J \smallsetminus J_m} \mu_j f_j \qquad \text{avec } \lambda_i, \mu_j \in k.$$

De plus, comme $\boxed{5}$, les coefficients μ_j ne peuvent pas être tous nul. Soit $j_0 \in J \setminus J_m$ tel que $\mu_{j_0} \neq 0$, et notons $J_{m+1} = J_m \cup \{j_0\}$. Comme $j_0 \notin J_m$, on a Card $J_{m+1} = m+1$. Montrons que $\left(e_{i,i \in I_{m+1}}, f_{j,j \in J \setminus J_{m+1}}\right)$ est une famille génératrice de E. Soit $\boxed{6}$. La famille $\left(e_{i,i \in I_m}, f_{j,j \in J \setminus J_m}\right)$ est génératrice, donc on peut écrire

$$x = \sum_{i \in I_m} \lambda_i' e_i + \sum_{j \in J \setminus J_m} \mu_j' f_j \quad \text{avec } \lambda_i', \mu_j' \in k.$$

D'autre part, on a

$$f_{j_0} = \mu_{j_0}^{-1} e_{i_0} - \sum_{i \in I_m} \mu_{j_0}^{-1} \lambda_i e_i - \sum_{j \in J \smallsetminus J_{m+1}} \mu_{j_0}^{-1} \mu_j f_j$$

d'après la décomposition de e_{i_0} ci-dessus. (Rappelons que $\fbox{7}$). On a alors :

$$\begin{split} x &= \sum_{i \in I_m} \lambda_i' e_i + \sum_{j \in J \smallsetminus J_{m+1}} \mu_j' f_j + \mu_{j_0}' f_{j_0} \\ &= \sum_{i \in I_m} \left(\lambda_i' - \frac{\mu_{j_0}'}{\mu_{j_0}} \lambda_i \right) e_i + \sum_{j \in J \smallsetminus J_{m+1}} \left(\mu_j' - \frac{\mu_{j_0}'}{\mu_{j_0}} \mu_j \right) f_j + \frac{\mu_{j_0}'}{\mu_{j_0}} e_{i_0}, \end{split}$$

donc x est combinaison linéaire de $\left(e_{i,i\in I_{m+1}},f_{j,j\in J\setminus J_{m+1}}\right)$, ce qui conclut la preuve du lemme

Pour montrer la proposition, on utilise le lemme avec $\boxed{8}$. L'inclusion $J_m\subseteq J$, donne alors $m=\operatorname{Card} J_m\leqslant\operatorname{Card} J$.

Finalement, soient E un espace vectoriel de dimension finie, et $(e_i)_{i\in I}$ et $(e_i')_{i\in I'}$ deux bases de E. Comme E est de dimension finie, il a une famille génératrice finie $(f_j)_{j\in J}$. D'après la proposition, comme une base est une famille $\boxed{9}$, on a $\operatorname{Card} I \leqslant \operatorname{Card} J$ et $\operatorname{Card} I' \leqslant \operatorname{Card} J$, donc I et I' sont finis. Comme la famille $(e_i)_{i\in I}$ est libre et la famille $(e_i')_{i\in I'}$ est génératrice, on a $\operatorname{Card} I \leqslant \operatorname{Card} I'$. De même, comme $(e_i')_{i\in I'}$ est libre et $(e_i)_{i\in I}$ est génératrice, on a $\operatorname{Card} I' \leqslant \operatorname{Card} I$. On a donc $\operatorname{Card} I = \operatorname{Card} I'$.

- \Box récurrence sur m \Box l'absurde
 - \Box contraposition
- 3 □ presque tout
 - □ tout
 □ un certain
- $\begin{array}{c|c} \boxed{4} & \square \ i_0 \in I_m \\ & \square \ i_0 \notin I_m \\ & \square \ i_0 \in I \end{array}$
- \Box la famille $(e_i)_{i \in I}$ est libre
 - \square la famille $(f_j)_{j\in J}$ est non vide \square la famille $(f_j)_{j\in J}$ est génératrice

- $\begin{array}{c|c} \hline 6 & \Box & x = e_{i_0} \\ \hline \Box & i \in I \end{array}$
 - $\Box x \in E$
- $\begin{array}{ccc}
 \boxed{7} & \square & \mu_{j_0} \in k \\
 & \square & i_0 \notin I_m \\
 & \square & \mu \neq 0
 \end{array}$
- $\Box \ \mu_{j_0} \neq 0$ $\boxed{8} \quad \Box \ m = \operatorname{Card} I$
 - $\Box m = \operatorname{Card} J$ $\Box m = 0$
- 9 □ finie
 - □ génératrice
 □ libre

Produit scalaire

Exercice 12

Montrer que la multiplication de \mathbb{R} est un produit scalaire sur le \mathbb{R} -espace vectoriel \mathbb{R} .

Montrer que sur \mathbb{C} , vu comme un \mathbb{R} -espace vectoriel, l'application $(x,y) \mapsto \operatorname{Re}(\overline{x}y)$ est un produit scalaire.

Exercice 14

Soit E l'espace des fonction réelles continues sur [0,1]. Montrer que

$$\left\{ \begin{array}{ccc} E^2 & \longrightarrow & \mathbb{R} \\ (f,g) & \longmapsto & \int_0^1 f(t)g(t)\,\mathrm{d}t \end{array} \right.$$

est un produit scalaire sur E.

Exercice 15

- 1. Soit $f \colon \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(t) = \frac{t^2}{4}$. Montrer que xy = f(x+y) f(x-y) $(\forall x,y \in \mathbb{R})$.
- 2. Sachant que l'on a f(245514) = 15069281049 et f(220512) = 12156385536, calculer 233013×12501 (sans calculatrice).
- 3. Comment peut-on retrouver un produit scalaire $(x, y) \mapsto x \cdot y$ à partir de l'application $x \mapsto x \cdot x$?

Exercice 16

On dit que deux vecteurs sont orthogonaux si leur produit scalaire est nul. Les vecteurs suivants sont-ils orthogonaux?

- (i) (1,0) et (0,1) dans \mathbb{R}^2 ;
- (ii) (2,3) et (3,2) dans \mathbb{R}^2 ;
- (iii) (2,3) et (3,-2) dans \mathbb{R}^2 ;
- (iv) (1,2,-4) et (2,1,0) dans \mathbb{R}^3 ;
- (v) $x \mapsto 1$ et sin dans l'espace des fonctions réelles continues sur $[0, 2\pi]$, muni du produit scalaire $(f,g) \mapsto \int_0^{2\pi} f(t)g(t) dt$;
- (vi) sin et cos dans le même espace qu'à la question précédente;
- (vii) α et $i\alpha$ dans \mathbb{C} muni du produit scalaire $(x,y) \mapsto \operatorname{Re}(\overline{x}y)$, pour $\alpha \in \mathbb{C}$.

Exercice 17

Soit E un espace vectoriel de dimension finie muni d'un produit scalaire. Soit $v \in E \setminus \{0\}$. Montrer que l'ensemble des éléments de E orthogonaux à v est un sous-espace vectoriel de E. Quelle est sa dimension?

Exercice 18

Deux vecteurs orthogonaux peuvent-ils être colinaires? Si e_1 , ..., e_m sont des vecteurs non nuls qui sont deux à deux orthogonaux, que peut-on dire de cette famille de vecteurs?

Soient $e_1, ..., e_n$ des vecteurs de \mathbb{R}^n . Notons \cdot le produit scalaire usuel de \mathbb{R}^n . On appelle $matrice\ de\ Gram$ de la famille $e_1, ..., e_n$ la matrice $G = \left(e_i \cdot e_j\right)_{1\leqslant i,j\leqslant n}$. Notons A la matrice de la famille $e_1, ..., e_n$ dans la base canonique de \mathbb{R}^n . Montrer que $\det(G) = \det(A)^2$.

Exercice 20

Soit E un \mathbb{R} -espace vectoriel de dimension finie, muni d'un produit scalaire \cdot et d'une base $(e_i)_{1\leqslant i\leqslant n}$. Notons A la matrice de Gram de cette base. Montrer que A est symétrique et que ses valeurs propres sont strictement positives.